CONCEPTO:
VIDEO DE HISTORIA DE REDES
TIPOS DE REDES
Redes dedicadas o exclusivas.Son aquellas que por motivo de seguridad, velocidad o ausencia de otro tipo de red, conectan dos o más puntos de forma exclusiva. Este tipo de red puede estructurarse en redes punto a punto o redes multipunto.
Redes punto a punto:Permiten la conexión en línea directa entre terminales y computadoras. La ventaja de este tipo de conexión se encuentra en la alta velocidad de transmisión y la seguridad que presenta al no existir conexión con otros usuarios. Su desventaja sería el precio muy elevado de este tipo de red.
Redes multipunto:Permite la unión de varios terminales a su correspondiente computadora compartiendo una única línea de transmisión. La ventaja consiste en el abaratamiento de su costo, aunque pierde velocidad y seguridad.Este tipo de redes requiere amplificadores y difusores de señal o de multiplexores que permiten compartir líneas dedicadas.
Redes compartidas:Son aquellas a las que se une un gran número de usuarios, compartiendo todas las necesidades de transmisión e incluso con transmisiones de otras naturalezas. Las redes más usuales son las de conmutación de paquetes y las de conmutación de circuitos.
Redes de conmutación de paquetes:Son redes en las que existen nodos de concentración con procesadores que regulan el tráfico de paquetes.
Las redes según la propiedad a la que pertenezcan pueden ser:
Redes privadas:Son redes gestionadas por personas particulares, empresas u organizaciones de índole privado. A ellas sólo tienen acceso los terminales de los propietarios.
Redes públicas:Son las que pertenecen a organismo estatales, y se encuentran abiertas a cualquier usuario que lo solicite mediante el correspondiente contrato.Ej.: Redes telegráficas, redes telefónicas, redes especiales para transmisión de datos.
Las redes según la cobertura del servicio pueden ser:

Redes de área local (LAN):Como su propio nombre indica, constituye una forma de interconectar una serie de equipos informáticos. Ethernet y CSMA-CD son dos ejemplos de LAN.
Redes de área extensa (WAN):La red LAN es una red que se puede ampliar, pero no es adecuado ampliarla tanto. Dos de los componentes importantes de cualquier red son la red de teléfono y la de datos. Son enlaces para grandes distancias que amplían la LAN hasta convertirla en una red de área extensa (WAN).
Una red de área metropolitana (metropolitan area network o MAN, en inglés) .-es una red de alta velocidad (banda ancha) que dando cobertura en un área geográfica extensa, proporciona capacidad de integración de múltiples servicios mediante la transmisión de datos, voz y vídeo, sobre medios de transmisión tales como fibra óptica y par trenzado (MAN BUCLE), la tecnología de pares de cobre se posiciona como una excelente alternativa para la creación de redes metropolitanas, por su baja latencia (entre 1 y 50ms), gran estabilidad y la carencia de interferencias radioeléctricas, las redes MAN BUCLE, ofrecen velocidades de 10Mbps, 20Mbps, 45Mbps, 75Mbps, sobre pares de cobre y 100Mbps, 1Gbps y 10Gbps mediante Fibra Óptica.
VIDEO DE TIPOS DE REDES
· TOPOLOGÍAS DE RED
La topología o la forma de conexión de la red, depende de algunos aspectos como la distancia entre las computadoras y el medio de comunicación entre ellas ya que este determina, la velocidad del sistema.Topología de red es la forma en que se distribuyen los cables de la red para conectarse con el servidor y con cada una de las estaciones de trabajo. La topología determina donde pueden colocarse las estaciones de trabajo, la facilidad con que se tenderá el cable y el corte de todo el sistema de cableado. La flexibilidad de una red en cuanto a sus necesidades futuras se refiere, depende en gran parte de la topología establecida.
TOPOLOGIA ESTRELLASe utiliza un dispositivo como punto de conexión de todos los cables que parten de las estaciones de trabajo. El dispositivo central puede ser el servidor de archivos en sí o un dispositivo especial de conexión. Ej.: Starlan de AT&T.El diagnóstico de problemas es fácil, debido a que las estaciones de trabajo se comunican a través del equipo central. Los fallos en el nodo central son fáciles de detectar y es fácil cambiar los cables. La colisión entre datos es imposible, ya que cada estación tiene su propio cable, y resulta fácil ampliar el sistema.En algunas empresas tienden a agruparse los cables en la unidad central lo cual puede ocasionar errores de gestión.
Topología Bus:El servidor y todas las estaciones están conectados a un cable general central. Todos los nodos comparten este cable y éste necesita acopladores en ambos extremos. Las señales y los datos van y vienen por el cable, asociados a una dirección destino. Cada nodo verifica las direcciones de los paquetes que circulan por la red para ver si alguna coincide con la suya propia. El cable puede extenderse de cualquier forma por las paredes y techos de la instalación. Jed: Ethernet y G-Net. La topología bus usa una cantidad mínima de cable y el cable es muy fácil de instalar, ya que puede extenderse por un edificio en las mejores rutas posibles. Así el cable debe ir de equipo en equipo.Las principales desventajas son: El cable central puede convertirse en un cuello de botella en entornos con un tráfico elevado, ya que todas alas estaciones de trabajo comparten el mismo cable. Es difícil aislar los problemas de cableado en la red y determinar que estación o segmento de cable los origina, ya que todas las estaciones están en el mismo cable. Una rotura de cable hará caer el sistema.
Topología Anillo:
Las señales viajan en una única dirección a lo largo del cable en forma de un bucle cerrado. En cada momento, cada nodo pasa las señales a otro nodo. Con la topología en anillo, las redes pueden extenderse a menudo a largas distancias, y el coste total del cableado será menor que en una configuración en estrella y casi igual a la bus. Una rotura del cable hará caer el sistema. Actualmente existen sistemas alternativos que evitan que esto ocurra.
Topología Estrella /Bus:Es una configuración combinada. Aquí un multiplexor de señal ocupa la posición del dispositivo central. El sistema de cableado de la red puede tomar la topología bus o anillo. Esto ofrece ventajas en el cableado de edificios que tienen grupos de trabajo separados por distancias considerables. Ej.: ARCNET. Ofrece gran flexibilidad para configurar la distribución de los cables y adaptarla a cualquier edifico.
Topología Estrella /Anillo:Existe un conector central. Las estaciones de trabajo se extienden a partir de este conector para incrementar las distancias permitidas: Jed, Token Ring de IBM.
TOPOLOGIA CELULAR
Topología de red celular La topología celular está compuesta por áreas circulares o hexagonales, cada una de las cuales tiene un nodo individual en el centro
VIDEO DE TOPOLOGIA DE REDES
PROTOCOLOS
Un Protocolo es una serie de reglas que indican a una terminal cómo debe llevar a cabo el proceso de comunicación.Dos terminales que se comunican pueden tener una arquitectura y un sistema operativo diferente que hace imposible una comunicación directa entre ambas. Debido a esto se han desarrollado protocolos que estandarizan la forma en que dos terminales deben establecer comunicación y lo hacen desde cuestiones físicas (por ejemplo tipo de cable, niveles de voltaje, frecuencia, etc.) hasta cuestiones meramente de software (representación de datos, compresión y codificación, entre otras cosas).
Protocolos más utilizados:
De todos los protocolos de redes sólo sobresalen tres por su valor académico o comercial:
El protocolo OSI (Open System Interconection) desarrollado por la ISO: es un protocolo basado en 7 niveles o capas y cada capa como está mencionado anteriormente tiene definido un protocolo; éste protocolo está basado en el supuesto de que una terminal se organiza de tal forma que la comunicación fluye por cada una de las siguientes capas: La capa física se encuentra en el nivel 0, la capa de enlace de datos en el nivel 1, la capa de transporte en el nivel 3, la de sesión en el 4, la de presentación en el 5 y la de aplicación en el 6. Las capas inferiores como anteriormente mencionado están orientadas al hardware y las capas superiores al software del usuario.
El protocolo de la IEEE: que de hecho esta más orientado al hardware que al software.
Protocolo TCP/IP: fue diseñado a finales de los 60's como el fundamento de la red ARPANET que conectaba las computadoras de oficinas gubernamentales y universitarias. Funciona bajo el concepto de cliente servidor, lo que significa que alguna computadora pide los servicios de otra computadora; la primera es el cliente y la segunda el servidor.
ARPANET evolucionó para lo que ahora se conoce como INTERNET y con ello también evolucionó el protocolo TCP/IP. Sin embargo la organización básica del protocolo sigue siendo la misma, se organiza en sólo tres niveles: el de red, transporte y aplicación.
PROTOCOLO OSI
PRTOCOLO IEEE
VIDEO DE PROTOCOLOS
Packet Tracer 5.2
Mejora de protocolos
El Packet Tracer ahora modela protocolos que antes no se incluían en versiones anteriores del Packet Tracer. Dentro de los protocolos y tecnologías de seguridad que se incluyen se pueden mencionar IPSec, GRE, ISAKMP, NTP, AAA, RADIUS, SNMP, SSH, Syslog, CBAC, Firewall basado en zonas, y mejora a la seguridad inalámbrica. Además se mejoro el modelo de algunos protocolos CCNA soportados en versiones anteriores del Packet Tracer.
Arquitectura extendida
El Packet Tracer está diseñado de una forma modular que permite una expansión a futuro. Por ejemplo con la Comunicación Inter-Proceso (IPC) se pueden crear aplicaciones externas que pueden expandir la funcionalidad del Packet Tracer.
Mejoras en la Interfaz gráfica
Se mejora la representación física de dispositivos y se agregan opciones de cableado estructurado.
Herramientas de visualización y representación
Se mejora el sniffer de red global que se puede visualizar en la Lista de Eventos (Event List). Al incorporarse nuevos protocolos y mejorarse los existentes, todos estos pueden ser analizados con estas herramientas.
Mejora del Asistente de Actividad
Esta versión de Packet Tracer mejora sustancialmente el asistente de actividad (Activity Wizzard). Se incorporan tres rangos: novato, intermedio y avanzado para facilitar el desarrollo de actividades. Además se crearon cuatro tipos de patrones de diseño de actividad según el tipo de ejercicio que se desea desarrollar:
* Actividades de resolución de problemas.
* Problemas de modelado de red.
* Actividades prácticas para aprendizaje de un concepto nuevo .
* Problemas de diseño.
Historia del Protocolo TCP/IP
La Familia de Protocolos de Internet fueron el resultado del trabajo llevado a cabo por la Agencia de Investigación de Proyectos Avanzados de Defensa (DARPA por sus siglas en inglés) a principios de los 70. Después de la construcción de la pionera ARPANET en 1969 DARPA comenzó a trabajar en un gran número de tecnologías de transmisión de datos. En 1972, Robert E. Kahn fue contratado por la Oficina de Técnicas de Procesamiento de Información de DARPA, donde trabajó en la comunicación de paquetes por satélite y por ondas de radio, reconoció el importante valor de la comunicación de estas dos formas. En la primavera de 1973, Vint Cerf, desarrollador del protocolo de ARPANET, Network Control Program(NPC) se unió a Kahn con el objetivo de crear una arquitectura abierta de interconexión y diseñar así la nueva generación de protocolos de ARPANET.
Para el verano de 1973, Kahn y Cerf habían conseguido una remodelación fundamental, donde las diferencias entre los protocolos de red se ocultaban usando un Protocolo de comunicaciones y además, la red dejaba de ser responsable de la fiabilidad de la comunicación, como pasaba en ARPANET , era el host el responsable. Cerf reconoció el mérito de Hubert Zimmerman y Louis Pouzin, creadores de la red CYCLADES, ya que su trabajo estuvo muy influenciado por el diseño de esta red.
Con el papel que realizaban las redes en el proceso de comunicación reducido al mínimo, se convirtió en una posibilidad real comunicar redes diferentes, sin importar las características que éstas tuvieran. Hay un dicho popular sobre el protocolo TCP/IP, que fue el producto final desarrollado por Cerf y Kahn, que dice que este protocolo acabará funcionando incluso entre "dos latas unidas por un cordón". De hecho hay hasta una implementación usando palomas mensajeras, IP sobre palomas mensajeras, que está documentado en RFC 1149.
Un ordenador denominado router (un nombre que fue después cambiado a gateway, puerta de enlace, para evitar confusiones con otros tipos de Puerta de enlace) esta dotado con una interfaz para cada red, y envía Datagrama de ida y vuelta entre ellos. Los requisitos para estos routers están definidos en el RFC 1812.
Esta idea fue llevada a la práctica de una forma mas detallada por el grupo de investigación que Cerf tenía en Stanford durante el periodo de 1973 a 1974, dando como resultado la primera especificación TCP (Request for Comments 675,) Entonces DARPA fue contratada por BBN Technologies, la Universidad de Stanford, y la University College de Londres para desarrollar versiones operacionales del protocolo en diferentes plataformas de hardware. Se desarrollaron así cuatro versiones diferentes: TCP v1, TCP v2, una tercera dividida en dos TCP v3 y IP v3 en la primavera de 1978, y después se estabilizó la versión TCP/IP v4 — el protocolo estándar que todavía se emplea en Internet.
En 1975, se realizó la primera prueba de comunicación entre dos redes con protocolos TCP/IP entre la Universidad de Stanford y la University College de Londres(UCL). En 1977, se realizó otra prueba de comunicación con un protocolo TCP/IP entre tres redes distintas con ubicaciones en Estados Unidos, Reino Unido y Noruega. Varios prototipos diferentes de protocolos TCP/IP se desarrollaron en múltiples centros de investigación entre los años 1978 y 1983. La migración completa de la red ARPANET al protocolo TCP/IP concluyó oficialmente el día 1 de enero de 1983 cuando los protocolos fueron activados permanentemente.
En marzo de 1982, el Departamento de Defensa de los Estados Unidos declaró al protocolo TCP/IP el estándar para las comunicaciones entre redes militares. En 1985, el Centro de Administración de Internet (Internet Architecture Board IAB por sus siglas en inglés) organizó un Taller de Trabajo de tres días de duración, al que asistieron 250
TCP (Transmission Control Protocol)
Fue creado entre los años 1973 y 1974 por Vint Cerf y Robert Kahn.
Muchos programas dentro de una red de datos compuesta por computadoras pueden usar TCP para crear conexiones entre ellos a través de las cuales puede enviarse un flujo de datos. El protocolo garantiza que los datos serán entregados en su destino sin errores y en el mismo orden en que se transmitieron. También proporciona un mecanismo para distinguir distintas aplicaciones dentro de una misma máquina, a través del concepto de puerto.
TCP da soporte a muchas de las aplicaciones más populares de Internet, incluidas HTTP, SMTP, SSH y FTP.
Funciones de TCP
En la pila de protocolos TCP/IP, TCP es la capa intermedia entre el protocolo de internet (IP) y la aplicación. Habitualmente, las aplicaciones necesitan que la comunicación sea fiable y, dado que la capa IP aporta un servicio de datagramas no fiable (sin confirmación), TCP añade las funciones necesarias para prestar un servicio que permita que la comunicación entre dos sistemas se efectúe libre de errores, sin pérdidas y con seguridad.
Los servicios provistos por TCP corren en el anfitrión (host) de cualquiera de los extremos de una conexión, no en la red. Por lo tanto, TCP es un protocolo para manejar conexiones de extremo a extremo. Tales conexiones pueden existir a través de una serie de conexiones punto a punto, por lo que estas conexiones extremo-extremo son llamadas circuitos virtuales. Las características del TCP son:
Orientado a la conexión: dos computadoras establecen una conexión para intercambiar datos. Los sistemas de los extremos se sincronizan con el otro para manejar el flujo de paquetes y adaptarse a la congestión de la red.
Operación Full-Duplex: una conexión TCP es un par de circuitos virtuales, cada uno en una dirección. Sólo los dos sistemas finales sincronizados pueden usar la conexión.
Error Checking: una técnica de checksum es usada para verificar que los paquetes no estén corruptos.
Acknowledgements: sobre recibo de uno o más paquetes, el receptor regresa un acknowledgement (reconocimiento) al transmisor indicando que recibió los paquetes. Si los paquetes no son notificados, el transmisor puede reenviar los paquetes o terminar la conexión si el transmisor cree que el receptor no está más en la conexión.
Control de flujo: si el transmisor está desbordando el buffer del receptor por transmitir demasiado rápido, el receptor descarta paquetes. Los acknowledgement fallidos que llegan al transmisor le alertan para bajar la tasa de transferencia o dejar de transmitir.
Servicio de recuperación de Paquetes: el receptor puede pedir la retransmisión de un paquete. Si el paquete no es notificado como recibido (ACK), el transmisor envía de nuevo el paquete.
IP(Internet Protocol)
Internet Protocol (en español Protocolo de Internet) o IP es un protocolo no orientado a conexión usado tanto por el origen como por el destino para la comunicación de datos a través de una red de paquetes conmutados.
Los datos en una red basada en IP son enviados en bloques conocidos como paquetes o datagramas (en el protocolo IP estos términos se suelen usar indistintamente). En particular, en IP no se necesita ninguna configuración antes de que un equipo intente enviar paquetes a otro con el que no se había comunicado antes.
IP provee un servicio de datagramas no fiable (también llamado del mejor esfuerzo (best effort), lo hará lo mejor posible pero garantizando poco). IP no provee ningún mecanismo para determinar si un paquete alcanza o no su destino y únicamente proporciona seguridad (mediante checksums o sumas de comprobación) de sus cabeceras y no de los datos transmitidos. Por ejemplo, al no garantizar nada sobre la recepción del paquete, éste podría llegar dañado, en otro orden con respecto a otros paquetes, duplicado o simplemente no llegar. Si se necesita fiabilidad, ésta es proporcionada por los protocolos de la capa de transporte, como TCP.
Si la información a transmitir ("datagramas") supera el tamaño máximo "negociado" (MTU) en el tramo de red por el que va a circular podrá ser dividida en paquetes más pequeños, y reensamblada luego cuando sea necesario. Estos fragmentos podrán ir cada uno por un camino diferente dependiendo de como estén de congestionadas las rutas en cada momento.
Las cabeceras IP contienen las direcciones de las máquinas de origen y destino (direcciones IP), direcciones que serán usadas por los conmutadores de paquetes (switches) y los enrutadores (routers) para decidir el tramo de red por el que reenviarán los paquetes.
El IP es el elemento común en la Internet de hoy.
El actual y más popular protocolo de red es IPv4. IPv6 es el sucesor propuesto de IPv4; poco a poco Internet está agotando las direcciones disponibles por lo que IPv6 utiliza direcciones de fuente y destino de 128 bits (lo cual asigna a cada milímetro cuadrado de la superficie de la Tierra la colosal cifra de 670.000 millones de direcciones IP), muchas más direcciones que las que provee IPv4 con 32 bits. Las versiones de la 0 a la 3 están reservadas o no fueron usadas. La versión 5 fue usada para un protocolo experimental. Otros números han sido asignados, usualmente para protocolos experimentales, pero no han sido muy extendidos.
Dirección IP
Una dirección IP es un número que identifica de manera lógica y jerárquicamente a una interfaz de un dispositivo (habitualmente una computadora) dentro de una red que utilice el protocolo de Internet (Internet Protocol), que corresponde al nivel de red o nivel 3 del modelo de referencia OSI. Dicho número no se ha de confundir con la dirección MAC que es un número físico que es asignado a la tarjeta o dispositivo de red (viene impuesta por el fabricante), mientras que la dirección IP se puede cambiar.
Es habitual que un usuario que se conecta desde su hogar a Internet utilice una dirección IP. Esta dirección puede cambiar al reconectar, y a esta forma de asignación de dirección IP se denomina una dirección IP dinámica (normalmente se abrevia como IP dinámica)
Los sitios de Internet que por su naturaleza necesitan estar permanentemente conectados, generalmente tienen una dirección IP fija (se aplica la misma reducción por IP fija o IP estática); es decir, no cambia con el tiempo. Los servidores de correo, dns, ftp públicos, servidores web, necesariamente deben contar con una dirección IP fija o estática, ya que de esta forma se facilita su ubicación. Las máquinas tienen una gran facilidad para manipular y jerarquizar la información numérica, y son altamente eficientes para hacerlo y ubicar direcciones IP. Sin embargo, los seres humanos debemos utilizar otra notación más fácil de recordar y utilizar; tal es el caso URLs y resolución de nombres de dominio DNS.
Existe un protocolo para asignar direcciones IP dinámicas llamado DHCP (Dynamic Host Configuration Protocol).
VIDEO DE PROTOCOLOS TCP,IP